

GENERAL DESCRIPTION

OB2279 is a highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter applications.

PWM switching frequency at normal operation is externally programmable and trimmed to tight range. At no load or light load condition, the IC operates in extended 'burst mode' to minimize switching loss. Lower standby power and higher conversion efficiency is thus achieved.

VDD low startup current and low operating current contribute to a reliable power on startup design with OB2279. A large value resistor could thus be used in the startup circuit for reduced power loss.

The internal slope compensation improves system large signal stability and reduces the possible sub-harmonic oscillation at high PWM duty cycle output. Leading-edge blanking on current sense input removes the signal glitch due to snubber circuit diode reverse recovery and greatly reduces the external component count and system cost in the design.

OB2279 offers comprehensive protection coverage including Cycle-by-Cycle current limiting(OCP), VDD Under Voltage Lockout(UVLO), VDD Over Voltage Protection(OVP), VDD Clamp, Gate Clamp, Over Load protection(OLP) and Over Temperature protection (OTP), etc.

Different latch shutdown options are offered on OB2279 in different device version. V version has OVP Latch shutdown. T version supports both OVP and OTP latch shutdown. L version provides all OVP, OTP and OLP latch shutdown control

Excellent EMI performance is achieved with On-Bright proprietary frequency shuffling technique together with soft switching control at the totem pole gate drive output.

Tone energy at below 20KHZ is minimized in operation. Consequently, audio noise is eliminated during operation.

OB2279 is offered in SOP-8 and DIP-8 packages.

FEATURES

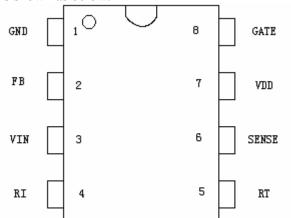
- On-Bright Proprietary Frequency Shuffling Technology for Improved EMI Performance
- Power On Soft Start
- Extended Burst Mode Control For Improved Efficiency and Minimum Standby Power Design
- Audio Noise Free Operation
- External Programmable PWM Switching Frequency
- Internal Synchronized Slope Compensation
- Low VIN/VDD Startup Current(3uA) and Low Operating Current (2.3mA)
- Leading Edge Blanking on Current Sense Input
- Complete Protection Coverage with selective protections for Latch Shutdown
- VDD Over Voltage Protection(OVP) Latch Shutdown
- Over Temperature Protection(OTP) Auto recovery or Latch Shutdown
- Over Load Protection. (OLP) Auto recovery or Latch Shutdown
- o VDD Under Voltage Lockout with Hysteresis (UVLO)
- Gate Output Voltage Clamp (16.5V)
- Built-in OCP Compensation to Achieve Minimum OPP Variation over Universal AC Input Range.

APPLICATIONS

Offline AC/DC flyback converter for

- Adaptor
- Notebook Adaptor
- LCD Monitor/TV/PC/Set-Top Box Power Supplies
- Open-frame SMPS
- Printer Power

TYPICAL APPLICATION



GENERAL INFORMATION

Pin Configuration

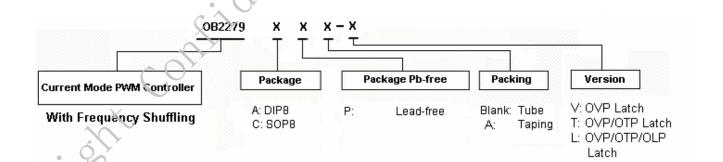
The pin map of OB2279 in DIP8 and SOP8 package is shown as below.

Ordering Information

Part Number	Description
OB2279AP-V	DIP8, V version with OVP
	Latch
OB2279AP-T	DIP8, T version with
	OVP/OTP latch
OB2279AP-L	DIP8, L version with
	OVP/OTP/OLP latch
OB2279CP-V	SOP8, V version with OVP
	latch
OB2279CP-T	SOP8, T version with
	OVP/OTP latch

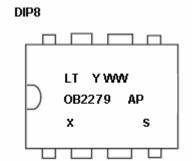
OB2279CP-L	SOP8, L version with	
	OVP/OTP/OLP latch	

Note: All Devices are offered in Pb-free Package if not otherwise

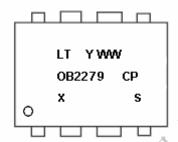

Package Dissipation Rating

Package	RθJA (°C/W)
DIP8	90
SOP8	150

Absolute Maximum Ratings


Parameter	Value
VDD Clamp Voltage	35 V
VDD Clamp Continuous	10 mA
Current	
V _{FB} Input Voltage	-0.3 to 7V
V _{SENSE} Input Voltage to Sense	-0.3 to 7V
Pin	
V _{RT} Input Voltage to RT Pin	-0.3 to 7V
V _{RI} Input Voltage to RI Pin	-0.3 to 7V
Min/Max Operating Junction	-20 to 150 °C
Temperature T _J	
Min/Max Storage Temperature	-55 to 150 °C
T_{stg}	
Lead Temperature (Soldering,	260 °C
10secs)	

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

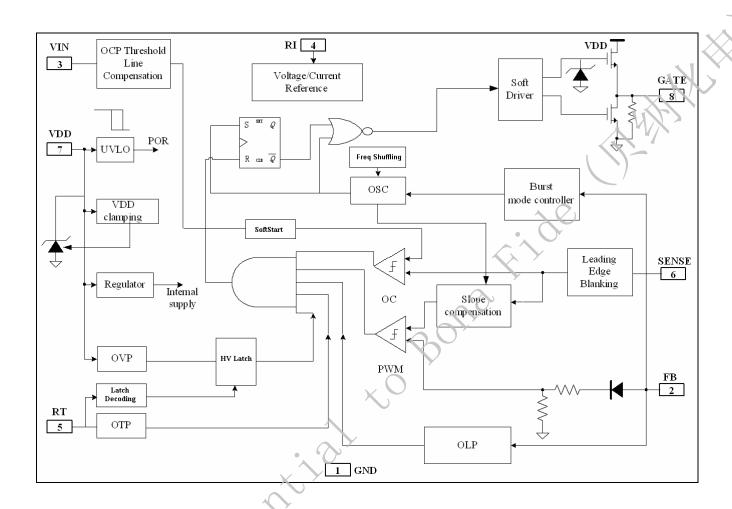

Marking Information

A: DIP8 Package P: Pb-free Package Y: Year Code(0-9) WW: Week Code(01-52)

X: Version s: Internal Code

SOP8

C: SOP8 Package P: Pb-free Package Y: Year Code(0-9) WW: Week Code (01-52)


X: Version s: Internal Code

TERMINAL ASSIGNMENTS

Pin Num	Pin Name	I/O	Description
1	GND	P	Ground
2	FB	Ι	Feedback input pin. PWM duty cycle is determined by voltage level into this pin and current-sense signal level at Pin 6.
3	VIN	Ι	Connected through a large value resistor to rectified line input for Startup and line voltage sensing.
4	RI	I	Internal Oscillator frequency setting pin. A resistor connected between RI and GND sets the PWM frequency.
5	RT	I	Dual function pin. Either connected through a NTC resistor to GND for over temperature shutdown control or used as latch shutdown control input.
6	SENSE	Ι	Current sense input pin. Connected to MOSFET current sensing resistor node.
7	VDD	P	DC power supply pin.
8	GATE	O	Totem-pole gate drive output for power MOSFET.
	X CO		

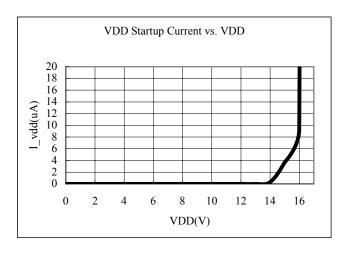
BLOCK DIAGRAM

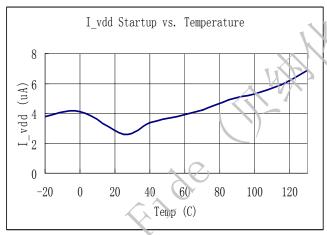
RECOMMENDED OPERATING CONDITION

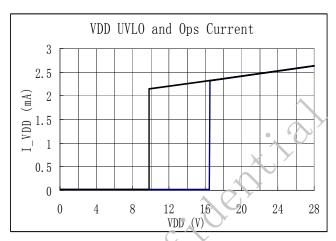
Symbol	Parameter	Min	Max	Unit
VDD	VDD Supply Voltage	11.5	25	V
RI	RI Resistor Value	100	133	Kohn
T_A	Operating Ambient Temperature	-20	85	°C
5				

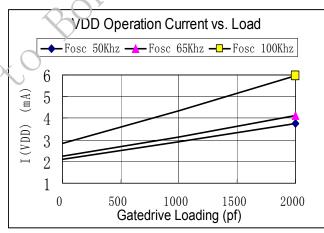
ELECTRICAL CHARACTERISTICS

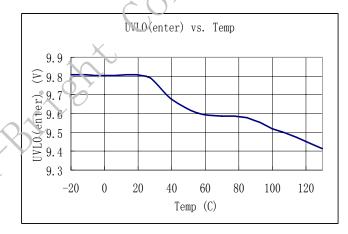
 $(T_A = 25^{\circ}C \text{ if not otherwise noted})$

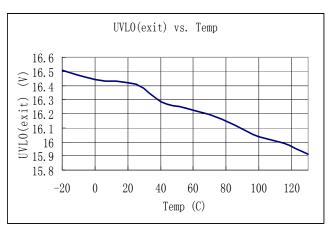

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Supply Voltage (V	(DD)					- 1
I VDD Startup	VDD Start up Current	VDD=15V, RI=100K		3	20	uA
	•	Measure current into				
		VDD				1/1/11
I VDD Ops	Operation Current	VDD=16V,		2.3		mA
	•	$RI=100Kohm, V_{FB}=3V$				
UVLO(Enter)	VDD Under Voltage		8.8	9.8	10.8	V
	Lockout Enter					
UVLO(Exit)	VDD Under Voltage		15.5	16.5	17.5	V
	Lockout Exit			10		
	(Startup)		•	0		
OVP(Latch)	VDD Over Voltage		26.5	28	29.5	V
, , , ,	Latch Trigger		1			
OVP(De-Latch)	VDD Latch Release		7	7.5		V
,	Voltage Threshold		7			
I(Vdd) latch	VDD bleeding current		,	45		uA
\	at latch shutdown					
	when $VDD = 9V$					
T _D OVP	VDD OVP Debounce	RI = 100Kohm		80		uSec
5_	time					
V _{DD} _Clamp	V _{DD} Zener Clamp	$RI = 100$ Kohm, $I(V_{DD}) =$		35		V
- DD	Voltage	5 mA				
T Softstart	Soft Start Time			3		mSec
Feedback Input Se		7			I	
A _{VCS}	PWM Input Gain	$\Delta V_{\rm FB}/\Delta V_{\rm cs}$		2.8		V/V
V _{FB} Open	V _{FB} Open Voltage	VDD = 16V		6.2		V
· FB_Open	THE Open Tollage	101		0.2		•
I _{FB} Short	FB pin short circuit	Short FB pin to GND,		0.75		mA
Trb_onort	current	measure current		0.75		1111 1
V _{TH} _0D	Zero Duty Cycle FB	VDD = 16V,			0.95	V
VIH_OD	Threshold Voltage	RI=100Kohm			0.75	•
V _{TH} _BM	Burst Mode FB	TO TOUTONINI		1.6		V
VIH_BIVI	Threshold Voltage			1.0		•
V _{TH} _PL	Power Limiting FB			4.4		V
, Iu_1 5	Threshold Voltage					Ť
T _D _PL	Power limiting	VDD = 16V,		80		mSec
1D_1 D	Debounce Time	RI=100Kohm				msec
Z _{FB} IN	Input Impedance	TO TOUTONINI		9.0		Kohm
Current Sense Inp		<u> </u>	1	7.0		Komii
T blanking	Sense Input Leading	RI = 100Kohm		300		nSec
_oranking	Edge Blanking Time	Ki 100Komii		300		nocc
Z _{SENSE} _IN	Sense Input			30		Kohm
∠SENSE_II V	Impedance			30		IXOIIII
T _D OC	Over Current	CL=1nf at GATE,		70		nSec
1 _D _0C	Detection and Control	RI=100Kohm		/ 0		11500
	Delay	KI TOOKOIIII				
V _{TH} _OC_0	Current Limiting	VDD = 16V, I(VIN) =	0.85	0.90	0.95	V
VTH_OC_U	Threshold at No	0uA, RI=100Kohm	0.03	0.90	0.33	*
	Compensation	ouzi, Ki–100Kullili				
	Compensation			l	l	

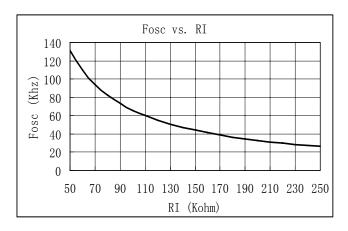


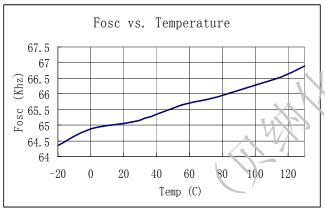

V OC 1	Commant Limitina	VDD = 16V 16VIN) =		0.00	1	17	
$V_{TH}_OC_1$	Current Limiting	VDD = 16V, I(VIN) =		0.80		V	
	Threshold at	150uA, RI=100Kohm					
0 111	Compensation						
Oscillator					T .	Т	
Fosc	Normal Oscillation	RI = 100Kohm	60	65	70	KHZ	
	Frequency					,	
Δf _Temp	Central Frequency	VDD = 16V,		3		%	
	Temperature Stability	$RI=100Kohm$, $-20^{\circ}C$ to				12/1/	
		100 °C				- 777	
Δf_VDD	Central Frequency	VDD = 12-28V,		3	т.	%	
	Voltage Stability	RI=100Kohm				1/	
RI_range	Operating RI Range		50	100	250	Kohm	
V RI open	RI open voltage	VDD = 16V		2.0		V	
F BM	Burst Mode Base	VDD = 16V,		20		KHZ	
_	Frequency	RI=100Kohm		A ()			
Gate Drive Outpu			_	7	,		
VOL	Output Low Level	VDD = 16V, $Io = 20 mA$		(0.3	V	
VOH	Output High Level	VDD = 16V, Io = 20 mA	11	7		V	
VG Clamp	Output Clamp	,	-	16.5		V	
_ · · _ · · · ·	Voltage Level		2				
Tr	Output Rising Time	VDD = 16V, CL = 1nf	<u> </u>	120		nSec	
Tf	Output Falling Time	VDD = 16V, CL = 1nf		50		nSec	
Over Temperatur					I.	ı	
I RT	Output Current of RT	VDD = 16V,		70		uA	
_	pin	RI=100Kohm					
V _{TH} _OTP	OTP Threshold	$VDD = 16V_{\star}$	1.015	1.065	1.115	V	
··· <u>-</u>	Voltage	RI=100Kohm					
V _{TH} OTP off	OTP Recovery	VDD = 16V,		1.165		V	
(Version V Only)	Threshold Voltage	RI=100Kohm					
V _{TH} RT latch	RT Input Latch			0.6		V	
(Version V Only)	Threshold Voltage)					
T_{D} OTP	OTP De-bounce Time	VDD = 16V,		100		uSec	
10_011	3 11 2 0 0 0 miles	RI=100Kohm		100		0.00	
V_RT_Open	RT Pin Open Voltage	VDD = 16V,		3.7		V	
, _1.1_opon	111 1 III open joinige	RI=100Kohm		3.,		,	
Frequency Shuffling							
Δf OSC	Frequency	RI=100Kohm	-3		3	%	
	Modulation range	TO TOOLOHIII	5			, 0	
	Base frequency						
Freq Shuffling	Shuffling Frequency	RI = 100Kohm		32		HZ	
9		10012011111	i	J –	1		

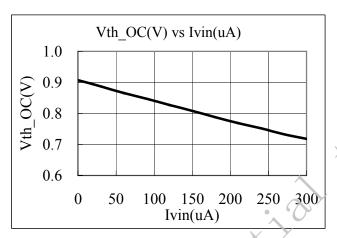


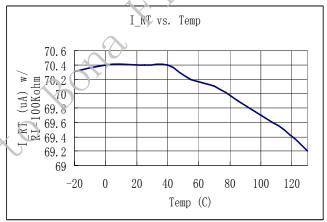

CHARACTERIZATION PLOTS

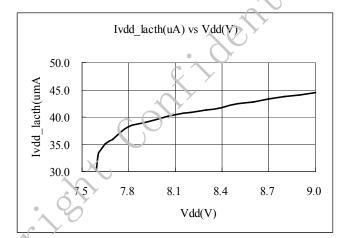












OPERATION DESCRIPTION

OB2279 is a highly integrated PWM controller IC optimized for offline flyback converter applications with requirement in latch shutdown or auto recovery. The extended burst mode control greatly reduces the standby power consumption and helps the design easily meet the international power conservation requirements.

• Startup Current and Start up Control

Startup current of OB2279 is designed to be very low so that VDD could be charged up above UVLO(exit) threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet reliable startup in application. For a typical AC/DC adaptor with universal input range design, a 2 M Ω , 1/8 W startup resistor could be used together with a VDD capacitor to provide a fast startup and yet low power dissipation design solution.

• Operating Current

The Operating current of OB2279 is low at 2.3mA. Good efficiency is achieved with OB2279 low operating current together with extended burst mode control schemes.

• Frequency shuffling for EMI improvement

The frequency Shuffling/jittering (switching frequency modulation) is implemented in OB2279. The oscillation frequency is modulated with a internally generated random source so that the tone energy is evenly spread out. The spread spectrum minimizes the conduction band EM1 and therefore eases the system design in meeting stringent EMI requirement.

Burst Mode Operation

At zero load or light load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. Reducing switching events leads to the reduction on the power loss and thus conserves the energy. OB2279 self adjusts the switching mode according to the loading condition. At from no load to light/medium load condition, the FB input drops below burst mode threshold level. Device enters Burst Mode control. The Gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to

minimize the switching loss thus reduce the standby power consumption to the greatest extend. The nature of high frequency switching also reduces the audio noise at any loading conditions.

Oscillator Operation

A resistor connected between RI and GND sets the constant current source to charge/discharge the internal cap and thus the PWM oscillator frequency is determined. The relationship between RI and switching frequency follows the below equation within the specified RI in Kohm range at nominal loading operational condition.

$$F_{osc} = \frac{6500}{RI(Kohri)}(Khz)$$

• Current Sensing and Leading Edge Blanking (LEB)

Cycle-by-Cycle current limiting is offered in OB2279 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to snubber diode reverse recovery so that the external RC filtering on sense input is no longer needed. The current limit comparator is disabled and cannot turn off the external MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

• Internal Synchronized Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

• Over Temperature Protection with Latch Shutdown(Only to T and L version)

A NTC resistor in series with a regular resistor should connect between RT and GND for temperature sensing and protection. NTC resistor value becomes lower when the ambient temperature rises. With the fixed internal current I_{RT} flowing through the resistors, the voltage at RT pin becomes lower at high temperature. The internal OTP circuit is triggered and shutdown the MOSFET when the sensed input voltage is lower than V_{TH} OTP.

OTP is a latched shutdown.

RT Pin Used as Latch Shutdown Input

RT pin could also be used as a control input to implement system latch shutdown function.

An example is to implement system OVP protection with a latch shutdown function through a photo coupler and affiliated circuits. When OVP detection signal connected to RT is lower than T/L V_{TH} OTP for Version device, V_{TH} OT Latch for Version V), OB2279 controls system into latch shutdown. The recovery of the AC/DC system could only start by resetting internal latch when VDD voltage drops below VDD Delatch value. This could be achieved by unplugging/re-plugging of AC source in AC startup configuration.

Gate Drive

OB2279 Gate is connected to the Gate of an external MOSFET for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive output compromises the EMI. Good tradeoff is achieved through the built-in totem pole gate drive design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme. An internal

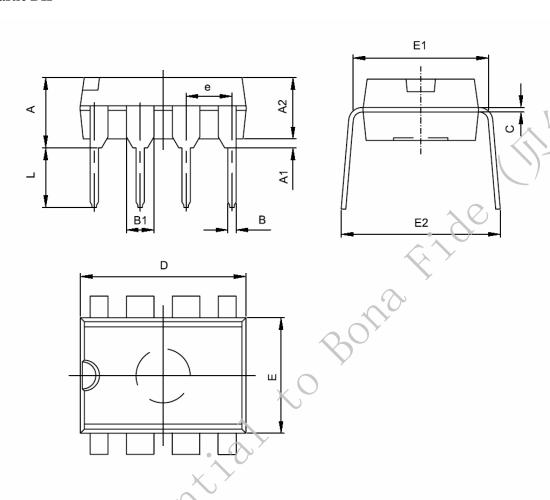
16.5V clamp is added for MOSFET gate protection

gate at.

rich protection features including Cycle-by-Cycle current limiting (OCP), Over Load Protection (OLP) with auto-recovery(V and T version) or latch shutdown(L version), over temperature protection (OTP) with auto-recovery(V version) or latch shutdown(T and L version), on-chip VDD over voltage protection (OVP) with latch shutdown and under voltage lockout (UVLO).

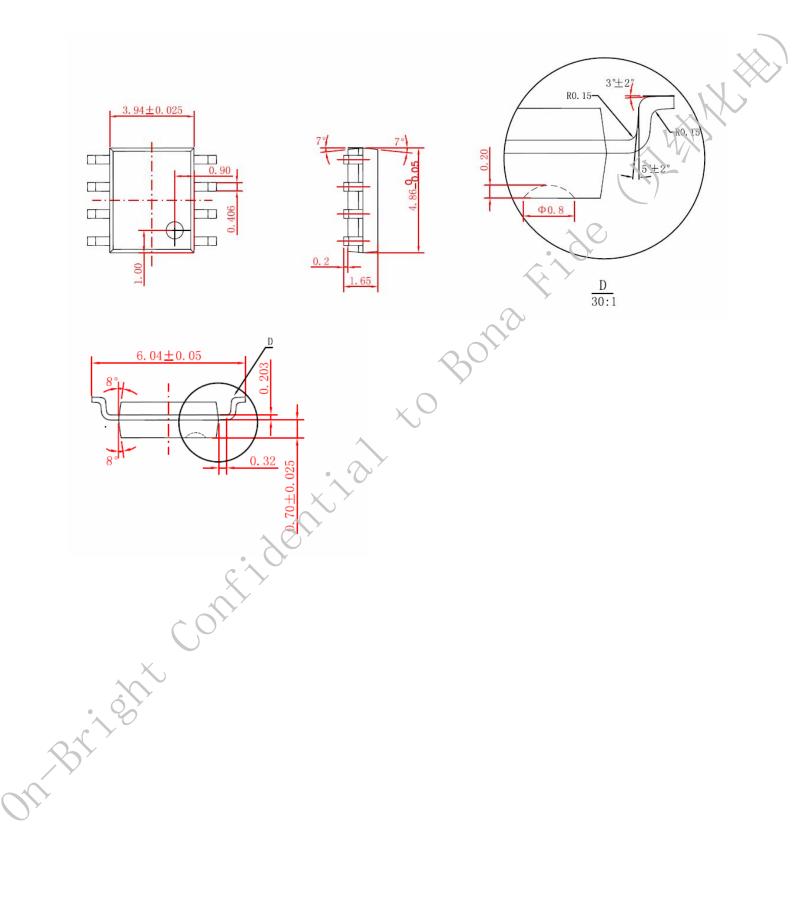
Good system reliability is achieved with OB2279's

VDD OVP protection is a latched shutdown in OB2279.


The OCP threshold value is self adjusted lower at higher current into VIN pin. This OCP threshold slope adjustment helps to compensate the increased output power limit at higher AC voltage caused by inherent Over-Current sensing and control delay. A constant output power limit is achieved with recommended OCP compensation scheme.

At output overload condition, FB voltage is set When FB input exceeds power limit threshold value for more than 80mS, control circuit reacts to turnoff the power MOSFET. This is so called OLP shutdown. It is either auto-recovery or latched shutdown depending on version of OB2279. Similarly, control circuit shutdowns the power MOSFET when an Over Temperature condition is detected. This shutdown is either auto-recovery or latched depending on version of OB2279 been used. VDD is supplied with transformer auxiliary winding output. It is clamped when VDD is higher than 35V. MOSFET is shut down when VDD drops below UVLO(enter) limit and device enters power on start-up sequence thereafter.

PACKAGE MECHANICAL DATA


8-Pin Plastic DIP

Complete I	Dimensions In Millimeters		Dimensions In Inches				
Symbol	Min	Max	Min	Max			
A	3.710	4.310	0.146	0.170			
A1	0.510		0.020				
A2	3.200	3.600	0.126	0.142			
В	0.360	0.560	0.014	0.022			
B1	1.524(TYP)		0.060(TYP)				
C	0.204	0.360	0.008	0.014			
D	9.000	9.400	0.354	0.370			
E	6.200	6.600	0.244	0.260			
E1	7.620(TYP) 2.540(TYP)		0.300(TYP)				
е			0.100(TYP)				
L	3.000	3.600	0.118	0.142			
E2	8.200	9.400	0.323	0.370			

8-Pin Plastic SOP

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.